Investigation into alternative testing methodologies for characterization of influenza virus vaccine
نویسندگان
چکیده
The objective of this study was to explore various testing methodologies suitable for characterizing sedimented or agglomerated material. To model this, bioCSL's split influenza virus vaccine, Fluvax® was utilized. The investigation was conducted on 5 dispensed lots of commercially manufactured vaccine, formulated for the 2013 Southern Hemisphere season. Vaccine syringes were initially inspected by visual tests; the material was then aseptically pooled for characterization assessment by microscopy and several agglomeration assays. All syringes passed bioCSL's description test where any fine or large sized particles of sediment observed in the vaccine were resuspended upon shaking; inverted light microscopy verified that the sediment morphology was consistent with influenza vaccine. Electron microscopic examination of pooled vaccine material demonstrated the presence of typical influenza structures including split virus, virosomes, whole virus particles and agglomerates. An optical density turbidity assay revealed relatively high protein recoveries in the vaccine supernatant post-centrifugation treatment, thus indicative of a well-dispersed vaccine formulation. This was corroborated by particle sizing analysis using dynamic light scattering which generated reproducible volume particle size distributions of a polydisperse nature. Ultraviolet-visible absorbance profiles further confirmed the presence of some agglomerated material. Data from all methods demonstrated consistent results between all batches of vaccine. Therefore, this investigation revealed the suitability and usefulness of the various methodologies in characterizing the appearance of agglomerated vaccine material. It is suggested that such methods may be applicable and beneficial for the development of a wider spectrum of heterogeneous and agglomerated formulations to provide safe, efficacious and superior quality biopharmaceutical products.
منابع مشابه
Monitoring virus harvesting time in embryonated chicken eggs inoculated with avian influenza H9N2 vaccine strain
Knowledge of virus and replication kinetic is one of the most important issues in the vaccine production. The present study aimed to evaluate the best harvesting time of H9N2 avian influenza virus (AIV) vaccine strain inoculated in specific pathogen free (SPF) embryonated chicken eggs (ECE)s. For this purpose, 10-5 dilution of AIV (A/Chicken/Iran/99/H9N2) was inoculated into 336, 11-day old ECE...
متن کاملOptimization of Microcarrier-based MDCK-SIAT1 Culture System for Influenza Virus Propagation
Introduction: The preparation of seasonal influenza virus vaccines and especially its large-scale production requirement after the emergence or reemergence of a pandemic will need an alternative host cell system due to current suboptimal methods and the insufficiency of embryonated chicken eggs needed for producing them. In response to the vital and increasing demand for alternative means for ...
متن کاملOptimization of incubation temperature in embryonated chicken eggs inoculated with H9N2 vaccinal subtype of avian influenza virus
There are little information about growth properties of low pathogenic (LP) avian influenza virus (AIV) in embryonated chicken eggs (ECEs) at different incubation temperatures. Knowledge of this information increases the quantity and quality of antigen in vaccine production process. For this purpose, 10-5 dilution of AIV (A/Chicken/Iran/99/H9N2) was inoculated (Intra-allantoic) into ...
متن کاملExpression of HA1 antigen of H5N1 influenza virus as a potent candidate for vaccine in bacterial system
The impending influenza virus pandemic requires global vaccination to prevent large-scale mortality and morbidity, but traditional influenza virus vaccine production is too slow for rapid responses. In this study, bacterial system has been developed for expression and purification of properly folded HA1 antigen as a rapid response to emerging pandemic strains. Here, a recombinant H5N1 (A/Indone...
متن کاملDesigning of A Multi-epitope Recombinant Protein, Consisting of Several Conserved Epitopes from Hemagglutinin Protein of the H1N1 and H5N1 Strains of Influenza Virus by Immunoinformatics Approaches
Introduction: According to marked advances in bioinformatics studies, development of influenza vaccines has been greatly modified in many studies. In this study, we have designed a multi-epitope recombinant protein, consisting of several conserved epitopes from Hemagglutinin protein of the H1N1 and H5N1 strains of Influenza virus by immunoinformatics approaches. Materials and Methods: The regis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015